Modelo:

ECMWF: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts". ECMWF is now running its own Artificial Intelligence/Integrated Forecasting System (AIFS) as part of its experiment suite. These machine-learning-based models are very fast, and they produce a 10-day forecast with 6-hourly time steps in approximately one minute.

Actualização:
4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 WEST
Resolution:
0.25° x 0.25°
parâmetro:
Relative Humidity at 300 hPa
Descrição:
This chart shows the relative humidity at 300 hPa, which is equivalent to an altitude of about 30.000 ft a.s.l. depending on the SLP. With the help of this map one is able to draw conclusions on the portion of the sky cover formed by high-level cirrus clouds.
NWP:
A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possível realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possível conseguir de outro modo.

Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675 (accessed fevereiro 9, 2010).