Modelo:

ECMWF: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts". ECMWF is now running its own Artificial Intelligence/Integrated Forecasting System (AIFS) as part of its experiment suite. These machine-learning-based models are very fast, and they produce a 10-day forecast with 6-hourly time steps in approximately one minute.

Actualização:
4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 WEST
Resolution:
0.25° x 0.25°
parâmetro:
Geopotential in 500 hPa (solid, black lines) and Temperature advection in K/6h (colored lines)
Descrição:
The map "T-Adv 500" shows the advection of cold or warm air at 500 hPa level. Negative values indicate cold advection, while positive values indicate warm air advection. Advection of warm or cold air causes the geopotential height to respectively rise or drop, producing vertical rising and sinking motion of air. There is, however, not a direct relationship between temperature advection and resultant vertical motion in the atmosphere since other lifting and sinking mechanisms can complicate the picture, e.g. vorticity advection (see "V-Adv maps").
In weather forecasting, temperature advection maps are often used to locate the postion of wam and cold fronts. Cold advection is common behind cold fronts, while warm advection is common behind warm fronts and ahead of cold fronts. Higher in the atmosphere temperature advection is getting less pronounced, as horizontal much more uniform in temperature and the flow is more zonal.
NWP:
A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possível realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possível conseguir de outro modo.

Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675 (accessed fevereiro 9, 2010).